LeNet
背景
LeNet是由Yann LeCun等人于1998年提出的卷积神经网络结构,该结构由卷积层、池化层和全连接层组成,可以高效地处理手写数字图像,并在MNIST数据集上取得了很好的性能。
LeNet-5的成功标志着卷积神经网络在计算机视觉领域中的崛起,并促进了深度学习的快速发展。
代码实现
import torch
import numpy as np
from torch import nn as nn
from torch.nn import functional as F
from d2l import torch as d2l
from matplotlib import pyplot as plt
import os
os.environ['http_proxy'] = 'http://127.0.0.1:7890'
os.environ['https_proxy'] = 'https://127.0.0.1:7890'
class LeNetReshape(nn.Module):
def __init__(self):
super(LeNetReshape, self).__init__()
def forward(self, x):
return x.reshape(-1, 1, 28, 28)
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.net = torch.nn.Sequential(
LeNetReshape(),
# 激活函数应为Sigmoid
nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.LeakyReLU(), nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.LeakyReLU(), nn.AvgPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(16 * 5 * 5, 120), nn.LeakyReLU(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10))
def forward(self, x):
return self.net(x)
def evaluate_accuracy_gpu(net, data_iter, device=None):
if isinstance(net, torch.nn.Module):
net.eval()
if not device:
device = next(iter(net.parameters())).device
metric = d2l.Accumulator(2)
for X, y in data_iter:
if isinstance(X, list):
X = [x.to(device) for x in X]
else:
X = X.to(device)
y = y.to(device)
metric.add(d2l.accuracy(net(X), y), y.numel()) # 此处accuracy是统计
return metric[0] / metric[1]
def accuracy(y_hat, y):
return torch.sum(y_hat.argmax(dim=1) == y)
def train(net, train_iter, test_iter, num_epochs, lr, device):
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = torch.nn.CrossEntropyLoss()
loss.to(device)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
metric = d2l.Accumulator(3)
net.train()
for epoch in range(num_epochs):
for batch, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
metric.add(l * X.shape[0], accuracy(y_hat, y), y.numel())
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (batch + 1) % (num_batches // 5) == 0 or batch == num_batches - 1:
animator.add(epoch + (batch + 1) / num_batches, (train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on {str(device)}')
plt.show()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
lr, num_epochs = 0.9, 10
lenet = LeNet5()
train(lenet, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
问题
在分类模型中,最后两个全连接层之间不要使用ReLU激活函数。因为ReLU的范围是[0, +∞),它会将所有负数都变成0。而最后一层全连接层输出了类别信息,倒数第二层的输出值包含着非常重要的类别信息,此时使用激活函数很可能会导致信息丢失。