
UltraLiDAR
Learning Compact Representations for LiDAR Completion and Generation



Related Work
● VQ-VAE

○ learn discrete representations by compressing images into discrete latent space
● VQ-GAN

○ based on the learned codebook and decoder in VQ-VAE, make a use of 
transformer model for generation

● MaskGIT
○ use mask modeling with bidirectional transformers

Existing works focus on 2D natural images

First work that conducts discrete representation in the 3D domain



Main Contribution
● Present a compact LiDAR representation that can effectively capture data 

priors
● Propose a sparse-to-dense LiDAR completion pipeline
● Develop an (un)conditional LiDAR generative model



Methodology

● Discrete Representations for 
LiDAR

● LiDAR Completion
● LiDAR Generation

○ Unconditional Generation
○ Conditional Generation
○ Free Space Suppression Sampling
○ Iterative Denoising



● VQ-VAE revisit
○  
○ Limited number of discrete codes stabilizes the input distribution of the decoder, 

forces the codes to capture meaningful, re-usable information

● VQ-VAE for LiDAR
○ Directly applying VQ-VAE for LiDAR is challenging
○ Voxelization: voxelize the point clouds and instead infer whether each voxel is 

occupied or not
○ Ground the point clouds with a pre-defined grid where the size of each voxel is 

15.625 × 15.625 × 15 cm for x, y, z dimensions
○ Convert the input to Bird’s-Eye View (BEV) images: treat the height dimension of 

the voxel grid as feature channel C, and process 3D LiDAR data just like 2D 
images

Discrete Representations for LiDAR



Details of VQ-VAE for LiDAR:

● Encoder E and Decoder G: both Swin Transformers with 12 layers (8 heads 
and the embedding dimension is 512)

● Codebook size is 1024, with 1024 hidden dimensions for each code
● Output of decoder is a logit grid
● Convert to binary voxel grid 
● Replace the                                       with a binary (occupied or not) 

cross-entropy loss
● Adopt a pre-trained voxel-based detector V to compute perceptual loss

Discrete Representations for LiDAR



● Given a dataset of paired, voxelized LiDAR point clouds
● For dense LiDAR point clouds       , learn a discrete codebook                      , 

an encoder         and a decoder  
● Learn a separate encoder        to map each sparse LiDAR point cloud       to 

the same feature space  
● Quantise the sparse LiDAR point cloud with the dense discrete 

representation        , 
● Decode with the dense decoder

LiDAR Completion



● Generate discrete code maps in the form of code indices
● Following MaskGIT, adopt a bi-directional self-attention Transformer to 

iteratively predict the code map
● For unconditional generation, start from a blank canvas
● At each iteration, select a subset of the predicted codes with top confidence 

scores and update the canvas accordingly

LiDAR Unconditional Generation



● For conditional generation, instead of start with a blank canvas, one can start 
with a partially filled code map

● For LiDAR manipulation, one can place special codes at ROI (Region of 
Interest), e.g. [CAR] codes, and run the model multiple times

LiDAR Conditional Generation



● MaskGIT iterative procedure can be viewed as a coarse-to-fine generation
○ Codes generated during early iterations determin the overall structure
○ While the ones generated at the end are in charge of fine-grained details

● Lead to degenerated results when generating LiDAR point clouds
○ LiDAR point clouds are sparse, a large portion of the scene is represented by the 

same code: [BLANK]
○ Transformer tends to predict [BLANK] codes with high scores since they occur 

frequently
○ May fill most of the canvas with them, and little structure will remain

● Suppress the [BLANK] code during the early generation stages by setting their 
probability to 0
○ Identify the [BLANK] codes by looking at the occurrence statistic of all codes 

across the whole dataset, empirically select the top as [BLANK] codes.

Free Space Suppression Sampling



● Generated point clouds contain high-frequency noise
● Randomly mask out different regions of the output LiDAR point clouds and 

re-generate them
○ If the masked region is a structured region, Transformer can still recover it through 

the context
○ If the masked region is a pure noise, then it will likely be removed after multiple 

trials, since the model can’t infer it from the context

Iterative Denoising



● Dataset: KITTI-360
● Since UltraLiDAR generates points based on voxels, the number of points 

may differ from the real point cloud, points from the same voxel will only 
count once

Experiment


