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Learning Compact Representations for LIDAR Completion and Generation



Related Work

e VQ-VAE
o learn discrete representations by compressing images into discrete latent space
e VQ-GAN
o based on the learned codebook and decoder in VQ-VAE, make a use of
transformer model for generation

e MaskGIT
o use mask modeling with bidirectional transformers
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Existing works focus on 2D natural images

First work that conducts discrete representation in the 3D domain
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Main Contribution

e Present a compact LiDAR representation that can effectively capture data
priors

e Propose a sparse-to-dense LIiDAR completion pipeline

e Develop an (un)conditional LiDAR generative model
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Methodology

Discrete Representations for
LiDAR

LiDAR Completion

LiDAR Generation

o Unconditional Generation

o Conditional Generation

o Free Space Suppression Sampling
o lterative Denoising
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Discrete Representations for LiDAR

e VQ-VAE revisit
O Log=lIx— %3+ [IselE)] - 23 + [lsel2] - B2
o Limited number of discrete codes stabilizes the input distribution of the decoder,
forces the codes to capture meaningful, re-usable information
e VQ-VAE for LiDAR
o Directly applying VQ-VAE for LiDAR is challenging
o Voxelization: voxelize the point clouds and instead infer whether each voxel is
occupied or not
o Ground the point clouds with a pre-defined grid where the size of each voxel is
15.625 x 15.625 x 15 cm for X, y, z dimensions
o Convert the input to Bird’s-Eye View (BEV) images: treat the height dimension of
the voxel grid as feature channel C, and process 3D LiDAR data just like 2D
images



Discrete Representations for LiDAR Oisnmury

Details of VQ-VAE for LiDAR:
e Encoder E and Decoder G: both Swin Transformers with 12 layers (8 heads
and the embedding dimension is 512)
Codebook size is 1024, with 1024 hidden dimensions for each code
Output of decoder is a logit grid % € REXWxXC
Convert to binary voxel grid xbin ¢ {0, 1}H*xWxC
Replace the £5 reconstruction loss with a binary (occupied or not)
cross-entropy 10ss  Lvg = [[x — X||3 + [[sg[E(x)] — 2[5 + [sg[2] — E(x)|3
e Adopt a pre-trained voxel-based detector J'to compute perceptual loss
Liear = Lvg + [[Vh (%) — Vi (X)|3

Vb denotes the feature from the last backbone layer of V'
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Given a dataset of paired, voxelized LiDAR point clouds {(x¥,x¥m), ..., (x5, x%)}
For dense LiDAR point clouds x¢%®, learn a discrete codebook {ei®,...,e%"},
an encoder Eder and a decoder Gden

Learn a separate encoder ESP to map each sparse LiDAR point cloud x*Pto
the same feature space z®* = EP(xP)

Quantise the sparse LiDAR point cloud with the dense discrete

representation €%, 2 = g¢(z)

Decode with the dense decoder %¥®-dn = Gden(2)

Sparse Point Cloud /) Discrete code /) Dense Point Cloud
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(a) Sparse to Dense Point Cloud Completion
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LiDAR Unconditional Generation

e Generate discrete code maps in the form of code indices

e Following MaskGIT, adopt a bi-directional self-attention Transformer to
iteratively predict the code map

e For unconditional generation, start from a blank canvas

e At each iteration, select a subset of the predicted codes with top confidence
scores and update the canvas accordingly
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(b) (Conditional) Point Cloud Generation
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LiDAR GConditional Generation

e For conditional generation, instead of start with a blank canvas, one can start
with a partially filled code map

e For LIDAR manipulation, one can place special codes at ROI (Region of
Interest), e.g. [CAR] codes, and run the model multiple times
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(b) (Conditional) Point Cloud Generation
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Eree Space Suppression Sampling

e MaskGIT iterative procedure can be viewed as a coarse-to-fine generation
o Codes generated during early iterations determin the overall structure
o While the ones generated at the end are in charge of fine-grained details

e |ead to degenerated results when generating LiDAR point clouds
o LiDAR point clouds are sparse, a large portion of the scene is represented by the

same code: [BLANK]
o Transformer tends to predict [BLANK] codes with high scores since they occur

frequently
o May fill most of the canvas with them, and little structure will remain

e Suppress the [BLANK] code during the early generation stages by setting their

probability to 0
o ldentify the [BLANK] codes by looking at the occurrence statistic of all codes

across the whole dataset, empirically select the top as [BLANK] codes.
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Iterative Denoising

e Generated point clouds contain high-frequency noise
e Randomly mask out different regions of the output LiDAR point clouds and
re-generate them
o If the masked region is a structured region, Transformer can still recover it through
the context
o If the masked region is a pure noise, then it will likely be removed after multiple
trials, since the model can’t infer it from the context



Experiment

e Dataset: KITTI-360

e Since UltraLiDAR generates points based on voxels, the number of points
may differ from the real point cloud, points from the same voxel will only
count once

Method MMDsggv J, JSDREV J,
LiDAR VAE [3] 1.18 x 10~° 0.256
LiDAR GAN [?] 2.07 x 1073 0.275

Projected GAN [38] | 1.25 x 1073 0.190
LiDARGen [56] 4.80 x 10~ 0.140
Ours 9.67 x 107° 0.132

Table 4. Quantitative results on KITTI-360. Our results show
better statistical alignment with the real data.



